How We Address One of the Biggest IoT Connectivity Challenges

Beginning on February 22, 2022, AT&T began phasing out its 3G network. This was a significant event for us since a majority of our cellular IoT gateways in northeast Wyoming had been using AT&T towers for most of 2021 and into February 2022. A small number of them, about 10%, utilized T-Mobile towers, but the overwhelming majority consistently used AT&T’s towers to transmit data. As the end of February approached, we watched them very closely to ensure there were no interruptions, and sure enough, on February 28th, we saw that AT&T’s towers dropped about 90% of our devices. 

Fortunately, these devices were able to seamlessly switch to T-Mobile, with only about 10% able to remain with AT&T. Sometime after this event, the majority of our gateways in that area eventually reverted back to AT&T. While this event thankfully had no negative impact on our services, it does highlight the ongoing nature of the cellular IoT connectivity challenges the industry faces. 

Cellular IoT Connectivity

It’s difficult to know if the discontinuation of 3G is related at all to the connectivity changes we experienced soon after. Perhaps during the phase-out of 3G, a firmware update at the tower, or even multiple updates, were required. Unless proper provisions were in place, it’s possible that during a firmware update, our modem or SIM was unable to connect to the AT&T network, resulting in the temporary switchover to T-Mobile. 

The ‘why’ isn’t really the point, though; cellular connectivity can be interrupted by many different events such as severe weather or cyberattacks. What we need to focus on is equipping our customers for these IoT connectivity challenges before they crop up. 

IoT Connectivity Challenges: Coverage & Availability

One of the most persistent challenges is related to coverage and network availability. Anybody who has ever owned a smartphone knows just how much network availability varies, even over small distances, and provider-generated coverage maps are infamously unreliable. If you require your IoT monitoring systems to work in remote areas, how are you supposed to guarantee connectivity? 

Traditionally, users have been limited to the constrictions of the commercial networks available in the areas where they need to deploy systems. If your system required cellular IoT to transmit data, you first needed to understand exactly which towers you had available to you in the region. However, even knowing that AT&T or T-Mobile claim to cover the area, you simply couldn’t know for sure until you performed an on-site test. This required buying SIM cards from multiple cellular providers, traveling out to the location(s) devices will be deployed, and testing them to see which SIM cards worked and which ones didn't. 

Once you discovered which carriers offered the best coverage for your devices, all you could do was hope that no interruptions occurred that would prevent your systems from successfully connecting to the network. 

Achieving Multi-Carrier Redundancy

At EDG, it was important that we address the IoT connectivity challenges mentioned above. And so, our cellular IoT gateways leverage a special soldered-down SIM that is capable of supporting multiple Tier 1 global networks with automatic network failover. This has created convenience on multiple levels.

From a usage perspective, this SIM provides connectivity and redundancy while allowing our cellular IoT gateways to have a degree of self-awareness. An excellent demonstration of this can be seen in the switch, or “failover”, from AT&T to T-Mobile (and back) we discussed earlier. This switch happened without any intervention by our engineers or the customers who purchased these devices. Most importantly, it allowed our gateways to transmit data to the cloud giving our customers a seamless experience without downtime. 

On the technology side of things, this also helps our customers get up and running more quickly. With the SIM technology we utilize, our cellular gateways "just work" so long as there are cellular towers within reach. You only need to purchase one SKU from EDG, and it will be ready to use automatically, so long as the region in which you plan to use it has supported Tier 1 networks. In the United States, AT&T and T-Mobile are the big two, but Union Telecom and Alaska Wireless are also supported. 

This single SKU approach to cellular IoT eliminates pains commonly experienced when managing network-dependent SIM cards for a large group of devices. Traditionally, customers would have to keep a stack of removable SIMs that are supported in particular locations, and then install them on the devices that are going to those locations. Once at the install site, a connectivity issue could result in the technician swapping out the SIM for one of a different network. You can imagine a scenario where data associated with a SIM is mismatched to the wrong device because of a manual logging error.

Since EDG’s SIMs are soldered down, they are permanently attached to our gateways, so our customers don't have to deal with these manually introduced errors. Further, soldered-down SIMs are a robust solution for rugged applications, as vibrations from equipment can adversely affect the electrical connection of a socketed SIM card.

Your Solution to the Biggest IoT Connectivity Challenges

Cellular IoT technology has taken off in recent years, and wide adoption has exposed new IoT connectivity challenges. EDG's integration of soldered-down SIMs with failover is just one of the ways we are proactively tackling these challenges. 

EDG’s cellular IoT gateways work anywhere with Tier 1 Network coverage. No configuration is required, and multi-network support eliminates the need to test multiple SIM cards. They are ready to use immediately after power-up. To guard against wear and tear, a rugged polycarbonate enclosure option ensures hardware is protected from damage caused by environmental conditions such as ice, rain, or wind. And, we automatically deploy over-the-air (OTA) security updates to each unit without application interruption. In short, EDG offers our customers a secure, reliable, and scalable IoT solution. 

If you’ve experienced your own challenges getting your IoT systems off the ground, reach out to EDG today. Our team is ready to help you harness the convenience and flexibility of cellular IoT.

Previous
Previous

From a Traditional to Modern Methane Gas Detector Strategy

Next
Next

The Quest for Responsibly Sourced Gas